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Black Hole Entropies of the Thin Film Model
and the Membrane Model Without Cutoffs
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Taking into account the effect of the generalized uncertainty principle on the generalized
black hole entropy and tacking the thin film brick-wall model, we calculate the entropy
of the quantum scalar field in generalized static black hole. The Bekenstein–Hawking
entropies of all well-known static black holes are obtained. The entropy of 2-D mem-
brane just at the event horizon of static black hole is also calculated, and the result
of the black hole entropy proportional to the event horizon area can be obtained more
easily and generally. This discussion shows that black hole entropy is just identified
with the entropy of the quantum field on the event horizon. The difference from the
original brick-wall model is that the present result is convergent without any cutoff and
the little mass approximation is removed. With residue theorem, the integral difficulty
in the calculation of black hole entropy is overcome.

KEY WORDS: generalized uncertainty principle; black hole entropy; event horizon;
cutoff.

1. INTRODUCTION

The discovery of Hawking radiation (Hawking, 1974, 1975) affirm the ther-
mal characteristics of black hole and prove that the black hole entropy is propor-
tional to its event horizon area (Bekenstein, 1973, 1974). The origin of black hole
entropy has many explanations, in which the brick-wall model (‘t Hooft, 1985)
is one of the most representative models. The brick-wall model argues that the
black hole entropy is identified with the statistical mechanical entropy arising from
the quantum fields propagating outside the event horizon and gives a statistical
method of calculating black hole entropy. This method has obviously improved
the understanding about the black hole entropy and has been greatly developed
(Gao and Liu, 2000; Ghosh and Mitra, 1994; Jing, 1998, 2003; Kastrup, 1997; Li,
2002a,b; Li and Zhao, 2001a,b; Liu et al., 2003; Liu and Zhao, 2001; Mukohyama
and Israel, 1998; Sun and Liu, 2004). However, in the calculation of original
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brick-wall model, it is discovered that the quantum state density is divergent near
the event horizon and the “ultraviolet cutoff” is introduced unnaturally by hand.
Further study reveals that the black hole entropy stems from the “wall contribu-
tion” (Mukohyama and Israel, 1998), and the brick-wall model is improved to the
thin film brick wall model (Gao and Liu, 2000; Li and Zhao, 2001a,b; Liu and
Zhao, 2001) and membrane model (Li and Zhao, 2001b). Here, the thin film model
takes only the quantum field inside a thin film near the event horizon into account,
and the membrane model attributed the black hole entropy to the quantum field on
a membrane which is a 2-D surface near the event horizon. In both models, more
thermal characteristics of the black holes are given, especially their relation to the
event horizon, also the “infrared cutoff” and little mass approximation appearing
in the original brick wall model are overcome, but the “ultraviolet cutoff” cannot
be avoided yet.

The quantum theory of gravity can transform the Heisenberg uncertainty
principle (HUP) into the generalized uncertainty principle (GUP), to which many
efforts have been devoted (Adler et al., 2001; Ahlumalia, 2000; Chang et al., 2002;
Garay, 1995; Kempf et al., 1995; Rama, 2001). Considering the GUP can seriously
influence the density of the states at the Planck temperature (Chang et al., 2002;
Rama, 2001), Li (2002a,b) introduce the GUP to the black hole thermodynamics
and the calculation of black hole entropy, in which the divergences of state density
and entropy of quantum field near the event horizon in the brick-wall model are
removed and an upper bound of black hole entropy is obtained. Here, we take
into account the effect of the GUP on the state density and the entropy in the
generalized static black hole space-time, in which we adopt the thin film brick-
wall model and the membrane model, as well as the brick-wall is located at Planck
length from the event horizon and the membrane is just at the event horizon. With
residue theorem, the integral difficulty appearing in the calculation of black hole
entropy (Li, 2002b) is overcome and the entropies themselves of the quantum
field with mass inside the thin film brick-wall and on the membrane are calculated
separately, and the result that both entropies are proportional to the event horizon
area is obtained. Comparing the two results, we find both entropies are similar and
the relation between them should be discussed further. Here, as the membrane is
just at the event horizon, the thin film brick-wall is cling to the event horizon, both
without any cutoff.

2. THE CALCULATION FORMULA FOR THE GENERAL
STATIC BLACK HOLE ENTROPY

Adopting the original brick-wall model, Jing (1998) obtains an expression
for the generalized static black hole entropy. In this work, the introduction of
“ultraviolet cutoff,” “infrared cutoff,” and little mass approximation are necessary
and does not have satisfactory explanations, and applying the expression to the
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different static black holes, the calculation process and the results are different.
Here, by using the GUP, this work can be improved.

In the quantum system under the Planck length, the quantum gravity
must be taken into account, so the HUP should be replaced by the GUP.
By the GUP, The general position-momentum uncertainty relation is given
by

�x �p ≥ h

2
[1 + λ〈p̂2〉 + γ 〈x̂2〉 + · · ·], (1)

where λ, γ are the constants displaying the gravity effect. Considering the mo-
mentum play domination and neglecting the high-order small quantities, we have

�x �p
h

2
[1 + λ〈p̂2〉] = h

2
{1 + λ[(�p)2 + 〈p̂〉2]}. (2)

Equation (2) implies that the uncertainty of position should not be infinitesimal,
and its minimal value is given by

�xmin = h
√

λ, (3)

where λ is of order of the Planck area l2
p.

Based on the GUP, the quantum-states number in the phase-space d3 �xd3 �p is
given by Chang et al. (2002)

dN ′ = dN

(1 + λp2)3
= d3 �xd3 ⇀

p

(2πh)3(1 + λp2)3
. (4)

Here dN is the quantum states number based on the HUP. Obviously, the quantum-
states number is suppressed by gravity and the suppression is essential on the
strongest possible gravitational fields. Of course, while the gravity effect can be
neglected, λ = 0, then dN ′ = dN . As follows, we discuss Eq. (4) near the event
horizon of generalized static black hole.

The geometry of generalized static black hole reads

ds2 = gtt dt2 + grr dr2 + gθθ dθ2 + gϕϕ dϕ2. (5)

Substituting Eq. (5) into the Klein–Gordon equation of scalar field with mass µ

as follows

1√−g
∂µ(gµν∂νφ) − µ2 = 0, (6)

we have

gtt ∂
2φ

∂t2
+ grr ∂2φ

∂r2
+ gθθ ∂2φ

∂θ2
+ gϕϕ ∂2ϕ

∂ϕ2
+
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+ 1√−g

∂

∂r
(
√−ggrr )

∂φ

∂r
+ 1√−g

∂

∂θ
(
√

ggθθ )
∂ϕ

∂θ

+ 1√
g

∂

∂ϕ
(
√

ggϕϕ)
∂ϕ

∂ϕ
− µ2φ = 0. (7)

Using the Wenzel–Kramers–Brillouin (WKB) approximation with the ansatz
(Jing, 1998)

φ = exp[−iωt + is(r, θ, ϕ)], (8)

and letting pr = ∂s
∂r

, pθ = ∂s
∂θ

, pϕ = ∂s
∂ϕ

, we can obtain the square module of three
momentums

p2 = grrp2
r + gθθp2

θ + gϕϕp2
ϕ = −gttω2 − µ2. (9)

Substituting Eq. (9) into Eq. (4), we obtain the number of quantum states in the
phase-space d3 �xd3 �p outside the generalized static black hole

dN ′ = d3 �xd3 �p
(2πh)3[1 − λ(−gttω2 − µ2)]3

. (10)

Near the event horizon, gtt → 0, (−gttω2 − µ2) → ∞, then the divergence
of the quantum state density based the HUP in the original brick-wall model will
possibly be removed by the QUP, thus the free energy and entropy of the quantum
field near the event horizon will possibly be calculated without any cutoff. In fact,
this has been proved by Li (2002b).

Let us discuss the quantum field covering the event horizon in the thin film
rh − rh + ε. Setting ε is a small parameter corresponding to the minimal length
due to Eq. (3), we have

∫ rh+ε

rh

√
grr dr =

∫ rh+ε

rh

dr√
gtt

≈
∫ rh+ε

rh

dr√
2κ(r − rh)

=
√

2ε

κ
= h

√
λ, (11)

where κ is the surface gravity at the event horizon, in static black hole space–time,
it reads κ = 2πβ−1. Based on Eq. (9) and taking the natural units h = kB =
G = c = 1, the number of quantum states with energy less than ω is
given

�(ω) = 1

(2π )3

∫
dr dθdϕdprdpθdpϕ

[1 + λ(−gttω2 − µ2)]3

= 1

(2π )3

∫
drdθdϕ

[1 + λ(−gttω2 − µ2)]3

∫
dpθdpϕ

× 2√
grr

(−gttω2 − gϕϕp2
ϕ − gθθp2

θ − µ2)1/2
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= 1

6π2

∫
dθ dϕ

∫ rh+ε

rh

√−g√−gtt

(−gttω2 − µ2)3/2 dr

[1 + λ(−gttω2 − µ2)]3

(12)

where the integral goes over those of pθ and pϕ for which the argument of the
square root is positive and the two radial integral direction are taken into account.

According to the theory of canonical ensemble, the free energy of system can
be given by ‘t Hooft (1985)

F = 1

β

∑
ω

ln(1 − e−βω). (13)

In terms of the semiclassical theory and assuming that the energy ω is continuous,
we replace the integral by sum, and substitute Eq. (12) into Eq. (13), then

F (β) = 1

β

∫
d�(ω) ln(1 − e−βω) = −

∫ ∞

µ
√−gtt

�(ω)

eβω − 1
dω

= − 1

6π2

∫
dθ dϕ

∫ rh+ε

rh

√−g√−gtt

dr

∫ ∞

µ
√−gtt

(−gttω2 − µ2)3/2dω

(eβω − 1)[1 + λ(−gttω2 − µ2)]3

(14)

where the integral is taken only those values for which the square-root exists. The
entropy of quantum field in the thin film is given by

S = β2 ∂F

∂β
= β2

6π2

∫
dθ dϕ

∫ rh+ε

rh

√−g√−gtt

dr

×
∫ ∞

µ
√−gtt

(−gttω2 − µ2)3/2ωeβωdω

(eβω − 1)2[1 + λ(−gttω2 − µ2)]3
(15)

Near the event horizon gtt → ∞, then, without any little mass approximation,
the integral about ω is reduced to

�(ω) =
∫ ∞

µ
√−gtt

(−gttω2 − µ2)3/2ωeβωdω

(eβω − 1)2[1 + λ(−gttω2 − µ2)]3

=
∫ ∞

0

(−gtt )3/2ω4dω

(eβω − 1)(eβω + 1)(1 − λgttω2)3
=

∫ ∞

0
f (ω)dω. (16)

Considering f (ω) is a even function, setting −λgttω2 = x2, we have

�(ω) = 1

2

∫ +∞

−∞
f (ω) dω
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= 1

2β2λ3/2

∫ +∞

−∞

a2x4dx

(eax/2 − e−ax/2)2(1 + x2)3
= 1

2β2λ3/2
I(x). (17)

where

a = β√−λgtt
, (18)

near the event horizon, gtt → ∞, a → 0.
Due to the integral difficulty of �(ω), Li (2002b) only gives an upper bound

of black hole entropy. Here, this work can be improved by residue theorem with
setting complex function (Sun and Liu, 2004)

f (z) = az4

(eaz/2 − e−az/2)2(1 + z2)3
. (19)

where z = 0 is a removable pole, while a �= 2nπ, n = 1, 2, 3, . . ., z = i is a third-
order pole (deduct several points would not change the result of the integral), its
residue is

Resf (i) = 1

i
· a2

28 sin4 a
2

[
−a2

(
1 + cos2 a

2

)
+ 5a sin a − 6 sin2 a

2

]
; (20)

z = 2kπi
a

, (k = 1, 2, 3, . . .) is a series second-order poles, their residues are

Resf

(
2kπi

a

)
= 1

i

∑
k

( a

2kπ

)3
(

a
2kπ

)2 + 2[(
a

2kπ

)2 − 1
]4 . (21)

While a → 0, the sum of residues for f (z)in the up half complex coordinate space
is Resf = 1

2πi
× π

16 . Then, we have

�(ω) = 1

2β2λ3/2
I(x) = π

32β2λ3/2
. (22)

Substituting Eq. (22) into Eq. (16), we obtain an calculation formula for the
Bekenstin–Hawking entropy of generalized static black hole:

S = 1

192 πλ3/2

∫
dθ dϕ

∫ rh+ε

rh

√
ggtt dr. (23)

3. THE APPLICATION OF THE ENTROPY CALCULATION
FORMULA AND ITS 2-D MEMBRANE MODEL

Applying the Eq. (23) to the all well-known static black hole as
follows:
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Schwarzschild black hole

ds2 = −
(

1 − 2M

r

)
dt2 + dr2

1 − 2M/r
+ r2 dθ2 + r2 sin2 θ dϕ2, (24)

where M is the mass of the black hole;
R–N black hole

ds2= −
(

1 − 2M

r
+ Q2

r2

)
dt2 + dr2

1 − 2M/r + Q2/r2
+ r2dθ2 + r2 sin2 θ dϕ2,

(25)

where M is the mass and Q is the magnetic charge of the black hole;
Garfinkle–Horowitz–Strominger Dilatonblack hole (Garfinkle et al., 1991)

ds2 = −
(

1 − 2M

r

)
dt2 + dr2

1 − 2M/r
+ r(r − a)(dθ2 + sin2 θ dϕ2), (26)

where a = Q2
/

2Me−2φ0 , in which M is the mass, and φ0 is the asymptotic
constant of the dilation field;

Static Gibbons–Maeda Dilaton black hole (Gibbons and Maeda, 1988)

ds2 = − (r − r+)(r − r−)

R2
dt2 + R2dr2

(r − r+)(r − r−)
+ R2(dθ2 + sin2 θ dϕ2),

(27)

where r+ = M ±
√

M2 + D2 − P 2 − Q2, D = (P 2 − Q2)/2M and R2 = r2 −
D2. The parameters M , Q, and P represent mass, electric charge and magnetic
charge, respectively;

Garfinkle–Horne Dilaton black hole (Ghosh and Mitra, 1994)

ds2 = −
(

1− r+
r

) (
1− r−

r

)(1−a2)/(1+a2)
dt2+

(
1− r+

r

)−1(
1− r−

r

)(a2−1)/(1+a2)
dr2

+r2
(

1 − r−
r

)2a2/(1+a2)
(dθ2 + sin2 θ dϕ2), (28)

with dilaton field e2φ = (1 − r−/r)2a/(1+a2)e−2φo and Maxwell field F =
(Q/r2)dt ∧ dr , where a is a coupling constant, r = r+ is the location of the
event horizon.

Obviously, with above well-known static black holes, we all have

−gtt = grr , −g = gθθgϕϕ. (29)

Considering the event horizon area Ah = ∫ √
(gθθgϕϕ)h dθ dϕ, so we obtain

the Bekenstein-Hawking entropy for all the well-known static black hole all at
once

S ≈ 1

192πλ
3/2

∫ √
(gθθgϕϕ)h dθ dϕ

∫ rh+ε

rh

√
grr dr = Ah

192πλ
. (30)
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We believe that the black hole entropy is the reflection of the event horizon
characteristic and is just the entropy of the quantum field at the event horizon. For
more clearly illustrating this, we further study Eq. (23) using the membrane model
(Li and Zhao, 2001b). By calculating the quantum states in the 2-D membrane
near the event horizon, Li and Zhao (2001b) obtain the entropy of a black hole, but
due to the divergence of quantum state density based on the HUP, the membrane
can not be placed on the event horizon. Following study (Liu et al., 2003) shows
that the divergence can be removed by the GUP, and the membrane can be placed
on the event horizon. But owing to the integral difficulty, Liu et al. (2003) only
obtain an upper bound of black hole entropy. Here, we improve these works.

From Eq. (1), setting dr = 0, the metric of generalized static black hole
space–time can be mapped onto the 3-D equal r hypersurface, and the induced
metric is described by

dSm = gtt dt2 + gθθ dθ2 + gϕϕ dϕ2. (31)

Using WKB approximation with φ = exp[−iωt + is(r, θ, ϕ)], setting pθ =
∂s/∂θ , pϕ = ∂s/∂ϕ, and Substituting Eq. (31) into Eq. (6), we obtain the space
square module of two momentums on the hypersurface

p2 = gθθp2
θ + gϕϕp2

ϕ = −gttω2 − µ2. (32)

Based on the GUP, the number of quantum states in the phase-space d2 �xd2 �p
of the hypersurface is

dn′ = dn

(1 + λp2)2
= d2 �x d2 ⇀

p

(2πh)2(1 + λp2)2
. (33)

where dn is the quantum states number based on the HUP. As discussed in
the Section 2, the divergence of dn at the event horizon can be absorbed
by the factor (1 + λp2)2, so we can analytically calculate dn′ at the event
horizon.

Adopting the natural units, based on Eq. (33), the number of quantum states
with energy less than ω in the equalrmembrane outside the event horizon is given
by

�(ω) = 1

(2π )2

∫
dθ dϕ dpθ dpϕ

[1 + λ(−gttω2 − µ2)]2

= 1

(2π )2

∫
dθ dϕ

[1 + λ(−gttω2 − µ2)]2

∫
dpθ

2√
gϕϕ

( − gttω2−µ2−gθθp2
θ

)1/2

= π

(2π )2

∫
dθdϕ(−gttω2 − µ2)√

gθθgϕϕ[1 + λ(−gttω2 − µ2)]2
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= 1

4π

∫
(−gttω2 − µ2)

√
gθθgϕϕ

[1 + λ(−gttω2 − µ2)]2
dθ dϕ (34)

Considering all the well-known static black hole metric, gtt are all indepen-
dent onθ, ϕ, thus, Eq. (34) can be deuced generally to

�(ω) = A(−gttω2 − µ2)

4π [1 + λ(−gttω2 − µ2)]2
. (35)

where A = ∫ √
gθθgϕϕ dθ dϕ is the space area of the hypersurface.

According to the theory of canonical ensemble, and applying the semiclassi-
cal method, the free energy of the 2-D system can be given by

F (β) = 1

β

∫
d�(ω) ln(1 − e−βω) = −

∫
�(ω)

eβω − 1
dω

= − A

4π

∫ ∞

0

(−gttω2 − µ2) dω

[1 + λ(−gttω2 − µ2)]2(eβω − 1)
. (36)

Thus, the entropy of quantum states in the membrane is given by

S = β2 ∂F

∂β
= β2A

4π

∫ ∞

0

(−gttω2 − µ2)eβωω dω

(eβω − 1)2[1 + λ(−gttω2 − µ2)]2

= β2A

4π

∫ ∞

0

(−gttω2 − µ2)ω dω

(eβω − 1)(1 − eβω)[1 + λ(−gttω2 − µ2)]2
. (37)

Considering the membrane near the event horizon, then gtt → ∞, thus µ can be
neglected naturally, we obtain

S = β2A

4π

∫ ∞

0

−gttω3

(eβω + e−βω − 2)(1 − λgttω2)2
dω. (38)

Setting −λgttω2 = x2, considering the integral function of Eq. (38) is a odd
function about ω, we have

�(ω) =
∫ ∞

0

−gttω3 dω

(eβω + e−βω − 2)(1 − λgttω2)2

= 1

λβ2

∫ ∞

0

a2x3 dx

(eax + e−ax − 2)(1 + x2)2

= 1

2λβ2

∫ +∞

−∞

a2|x3| dx

(eax/2 − e−ax/2)2(1 + x2)2
= 1

2λβ2
I(x). (39)

where a = β
/√−λgtt .



576 Liu

Applying the residue theorem, setting complex function

f (z) = a2|z3|
(eaz/2 − e−az/2)2(1 + z2)2

(40)

Where z = 0 is a removable pole; while a �= 2nπ, n = 1, 2, 3, ..., z = i, is a
third-order pole, its residue is

Resf (i) = a3 cos a
2

i24 sin3 a
2

. (41)

z = 2kπi
a

(k = 1, 2, 3, . . .) is a series of second-order poles, their residues are

Resf

(
2kπi

a

)
= i

∑
k

( a

2kπ

)2
(

a
2kπ

)2 + 3[(
a

2kπ

)2 − 1
]3 . (42)

While a → 0, Resf (i) = 1
2i

, Resf ( 2kπi
a

) = 0, we have

�(ω) = 1

2λβ2
× 2πi × 1

2i
= π

λβ2
. (43)

Substituting Eqs. (39) and (43) into Eq. (38), the entropy of quantum states on the
membrane near the event horizon is obtained.

S = β2A

4π
× π

λβ2
= A

4λ
. (44)

In the generalized static black hole space-time, Applying Eq. (44) to the 3-D
null hypersurface namely the event horizon, then A is just the space area of the
event horizon Ah, so, by means of calculating the entropy of the quantum states
just at the event horizon, we obtain the quantum entropy of all well-known static
black holes.

S = Ah

4λ
. (45)

4. CONCLUSION AND DISCUSSION

In this paper, by introducing the GUP to the study of black hole entropy
and adopting the thin film model and the membrane model, we obtain a entropy
calculation formula Eq. (23) and entropy value Eq. (45) for generalized static black
hole, without any cutoff and little mass approximation; applying the Eq. (23) to
all well-known static black holes, the Bekenstein–Hawking entropies are obtained
and the results and calculation process are all the same as showing with the Eq.
(30), as the same time, the Eq. (45) is suitable in all well-known static black
holes and the result is also proportional to the event horizon area. This is proved
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that the quantum gravity can overcome the divergent difficulty appearing in the
‘t Hofft’s brick-mall model (include the original thin film model and the original
membrane model) and the combination of the GUP with the thin film model and
the membrane model are all successful.

Further, as showing in this paper, the membrane is just at the event horizon
and the Bekenstein–Hawking entropy is obtained. This can clearly indicate that the
black hole entropy is just the entropy of the quantum states on the event horizon.
We hold that the result of the membrane model can more deeply reflect the inherent
character of black hole entropy, and the difference of Eq. (30) from Eq. (45) (That
is to say, the entropy from the event horizon membrane is 48 times of the entropy
from the thin film)is just owing to the calculation of Eq. (30) being away from the
event horizon. Based on the holography principle (Susskind, 1995), all the black
hole characters should be manifested on its boundary namely the event horizon,
so the black hole entropy should be obtained by studying the event horizon itself.
When the calculation of the entropy of quantum field is away from the event
horizon, in their results, there will possibly be some additional factors beyond
the black hole entropy, and at the same time, some information about black hole
entropy will possibly be lost along with the moving of Hawking radiation from
the event horizon to outside. Besides, as well as the Eq. (30) of entropy from the
thin film, the entropy expression Eq. (43) of membrane outside the event horizon
is also different from the Eq. (44) of entropy from the membrane just at the event
horizon; moreover, by the Eq. (18), when the calculation of the entropy of quantum
filed is located outside the event horizon with finite distance or infinite distance,
a is a finite quantity, Eqs. (21) and (42) are all divergent, then the renormalization
of black hole entropy showing in Eqs. (15) and (38) should be necessary (But, the
renormalization or the combination of the GUP with the original brick-wall model
is still open to problem). Also, the results of original brick-wall model (Jing,
1998; ‘t Hooft, 1985) also include the item of the quantum correction to the black
hole entropy which is logarithmically divergent and the item of the contribution
from the vacuum surrounding the system at large distance. We think these all can
reveal that the calculation of black hole entropy should be at or near the event
horizon. More specific and deep physical meaning about this, for example, the
variance mode of black hole entropy along with the quantum field away from the
event horizon and more deep thermal characteristics and quantum gravity effect of
black hole, especially their relation to the event horizon, should be discussed in the
future.
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